

Seminário online Qualidade de Energia: Harmônicas

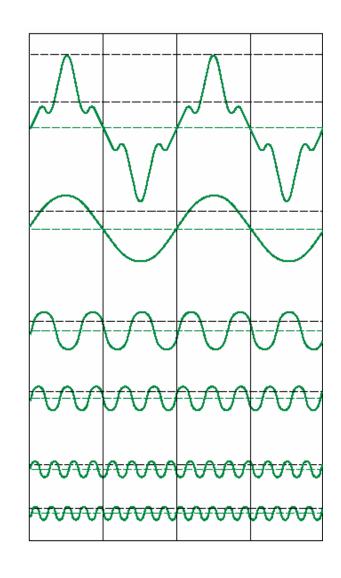
Por: Pedro Okuhara

Gerente de Produto

Voltimum S.A.

Maio 2014 | © Voltimum

Sumário



- Conceitos Básicos
- Solução com Filtros Ativos
- Case no setor automobilístico

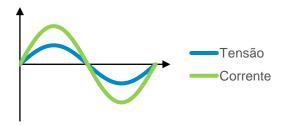
Conceitos Básicos

O que são Harmônicas?

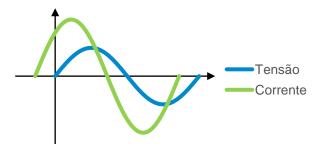
O que são Harmônicas?

As correntes Harmônicas são multiplas da corrente Fundamental (60Hz)

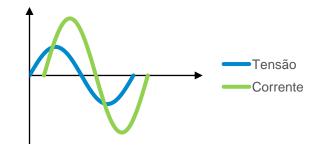
Ordens


1° > 60	6° > 360	11° > 660	16° ➤ 960	21° > 1260
2° > 120	7° ➤ 420	12° > 720	17° > 1020	22° > 1320
3° > 180	8° > 480	13° > 780	18° ➤ 1080	23° > 1380
4° > 240	9° > 540	14° > 840	19° > 1140	24° > 1440
5° > 300	10% 600	15° ➤ 900	20° > 1200	25° > 1500

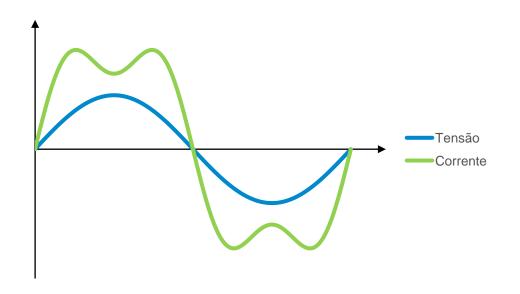
. . .



Cargas Lineares


Resistiva

Capacitiva



Indutiva

Cargas Não-lineares

- Inversores
- Máquinas de Solda
- Estrusoras
- Forno Elétrico a Arco
- Conversores CA/CC

Como são classificadas as Harmônicas?

Como são classificadas as Harmônicas?

Ordens

1° > 60	6° ≽ 360	11° > 660	16° ≻ 960	21° > 1260
2° > 120	7° ≽ 420	12° ≻ 720	17° ➤ 1020	22° > 1320
3° ≻ 180	8° ≽ 480	13° ≻ 780	18° ≽ 1080	23° > 1380
4° > 240	9° > 540	14° ➤ 840	19° ≻ 1140	24° > 1440
5° ➤ 300	10% 600	15° ≽ 900	20° ≽ 1200	25° ≻ 1500

POSITIVA

NEUTRA

NEGATIVA

Origem das Harmônicas

Como surgem as correntes Harmônicas nos Conversores?

$$H = n * p \pm 1$$

H – Ordem Harmonica

n – multiplicador

p – números de pulsos

Inversor de 6 pulsos

$$1*6-1=5^{\circ}$$

$$1*6+1=7°$$

$$2*6-1=11^{\circ}$$

$$2*6+1=13^{\circ}$$

$$3*6-1=17^{\circ}$$

$$3*6+1=19^{\circ}$$

Inversor de 12 pulsos

$$1*12-1=11^{\circ}$$

$$1*12+1=13°$$

$$2*12-1=23^{\circ}$$

$$2*12+1=25^{\circ}$$

$$3*12-1=35^{\circ}$$

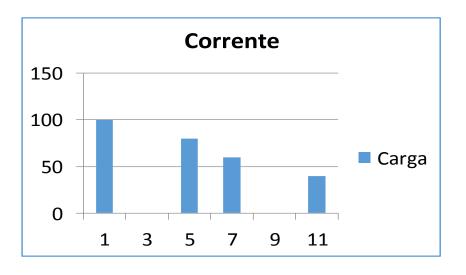
$$3*12+1=37^{\circ}$$

Corrente Eficaz

A somatória quadrática de todas as correntes que circulam pelo condutor.

$$I_{RMS} = \sqrt{\sum_{n=1}^{\infty} I_n^2}$$

n = ordem harmônica


Valor eficaz de Corrente (A)

$$I_{RMS} = \sqrt{I_1^2 + \sum_{n=2}^{\infty} I_n^2}$$

Corrente Eficaz

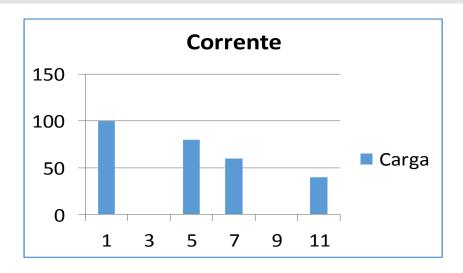
Exemplo:

$$I_{RMS} = \sqrt{100^2 + 80^2 + 60^2 + 40^2}$$

$$I_{RMS} = 147A$$

Distorção Harmônica

 Razão entre somatória quadrática das correntes Harmônicas e a corrente fundamental


THD = Distorção total de Harmônicas

$$THD_{i} = \frac{\sqrt{\sum_{n=2}^{\infty} I_{n}^{2}}}{I_{1}} \times 100\%$$

Distorção Harmônica

Exemplo:

$$THD_i = \frac{\sqrt{80^2 + 60^2 + 40^2}}{100} x100\%$$

$$THD_{i} = 108\%$$

Distorção Harmônica

 Razão entre somatória quadrática das correntes Harmônicas e a corrente do sistema, dentro de um período de 15 a 30min

$$TDD = \frac{\sqrt{\sum_{n=2}^{\infty} I_n^2}}{I_L}$$

TDD = Distorção de Demanda de Harmônicas

Fator de Potencia

 Fator que indica o nível de eficiencia de um determinado equipamento ou Instalação.

$$PF_{TOTAL} = \frac{P_{total}}{S_{total}} = \left(\frac{P_1}{V_1 I_1}\right) \sqrt{\frac{1}{1 + \left(\frac{THD_I}{100}\right)^2}}$$

Limites Harmônicos IEEE 519-1992

Limites das distorções de Corrente

	Distorção Máxima da Corrente Harmônica em % de I ^L					
	Ordem Harmônica Individual (Harmônicas Impares)					
Isc/IL	< 11	11≤h<17	17≤h<23	23≤h<35	35≤h	TDD
<20*	4,0	2,0	1,5	0,6	0,3	5,0
20<50	7,0	3,5	2,5	1,0	0,5	8,0
50<100	10,0	4,5	4,0	1,5	0,7	12,0
100<1000	12,0	5,5	5,0	2,0	1,0	15,0
>1000	15,0	7,0	6,0	2,5	1,4	20,0

Harmônicos pares são limitados em 25% dos limites dos harmônicos impares acima.

Distorções de correntes que resultam no offset de DC, por exemplo, conversores de meia onda, não são permitidos.

Isc = corrente de curto-circuito máxima no PCC

L = corrente da demanda máxima (componente da freqüência fundamental) no PCC.

Norma Brasileira Prodist – Modulo 8

^{*} Todo o equipamento de geração de energia é limitado a estes valores de distorção de corrente, independentemente do presente Isc/IL

Limites Harmônicos IEEE 519-1992

Limites das distorções de Tensão

Tensão na barra no	Distorção de tensão	Distorção de tensão
PCC	individual (%)	total THD (%)
69 kV e menor	3,0	5,0
69,001 kV até 161	1,5	2,5
kV		
161,001 kV e acima	1,0	1,5

Efeitos causados pelas Harmônicas

Aquecimento dos condutores e equipamentos

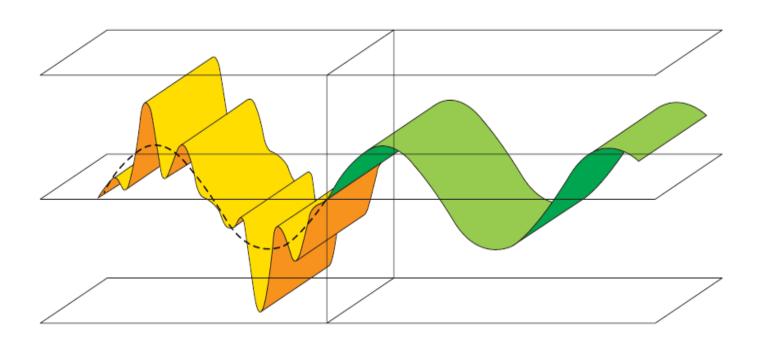
Efeito Pelicular

Aumento da resistência dos condutores causando perdas por aquecimento e mau funcionamento dos equipamentos

Efeitos causados pelas Harmônicas

Queima dos Bancos de Capacitores

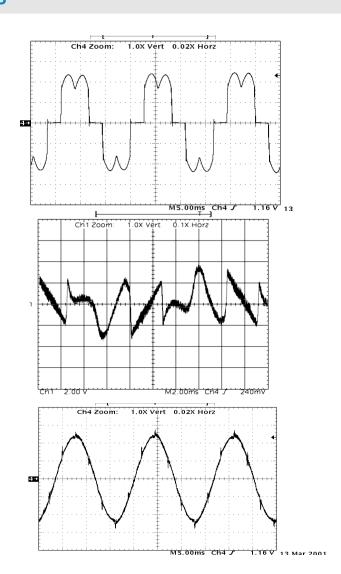
Disparos indevidos das proteções


Mau funcionamento dos equipamentos

Redução da vida útil dos equipamentos

Sobrecarga do neutro

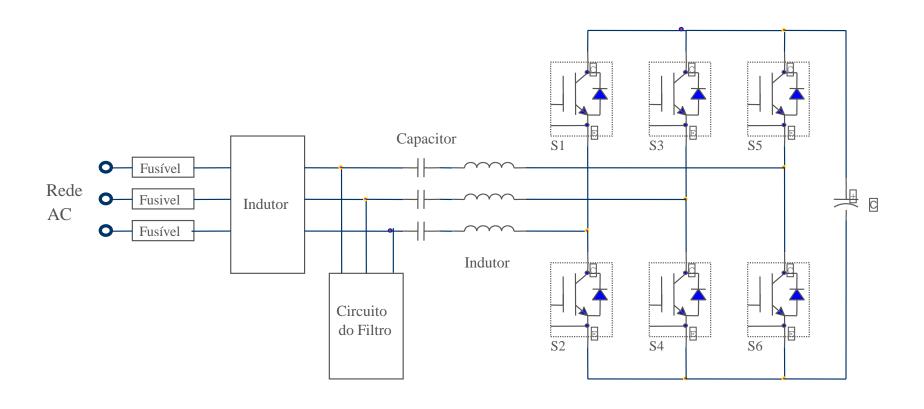
Solução com Filtros Ativos



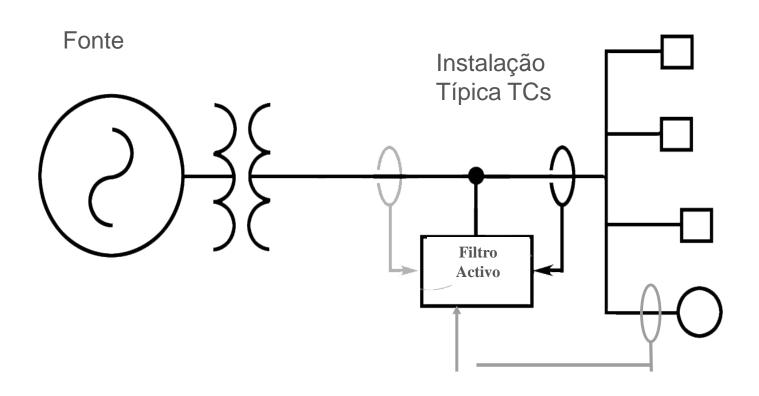
AccuSine[®]

Filtro Ativo de Harmônicas

Forma de Onda Carga

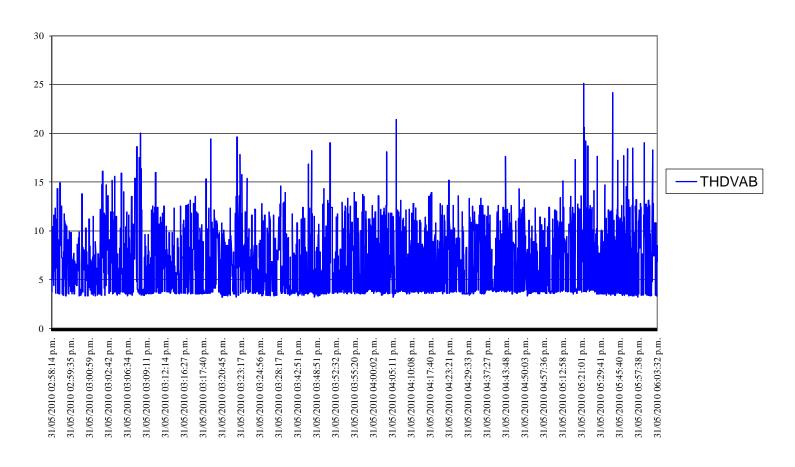


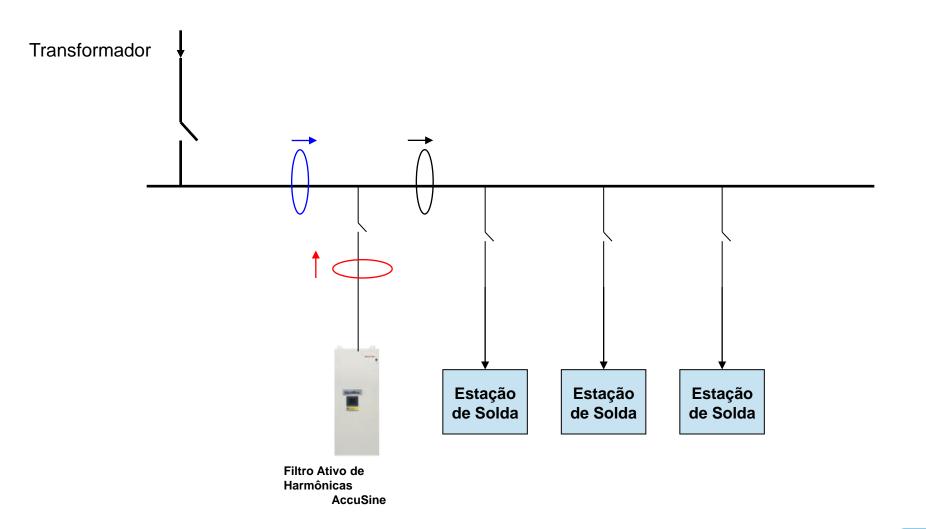
Forma de Onda Saída de corrente do Accusine


Forma de Onda Carga

- Aplicável a uma ou várias cargas não lineares
 - VFD, UPS, UV, Conversores CA/CC, Fontes CA/CC
- Mais efetivo em termos de custo para múltiplas cargas
- Economiza espaço
- Correção do Fator de Potência
- Balanceamento de Carga
- Não causa ressonância
- Espectro : 2ª a 50ª harmônica
- Comunicação: Modbus TCP/IP porta Ethernet

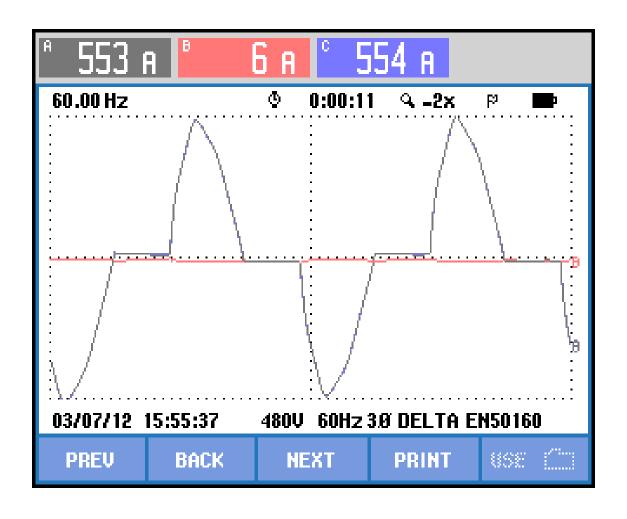
- 208-480V até 15kV (com transformador)
- NEMA 1
 - •50A 1905mm x 800mm x 600mm
 - Peso 300Kg
 - 100A − 1905mm x 800mm x 600mm
 - Peso 350 Kg
 - ●300A 2300mm x 1000mm x 800mm
 - Peso 550 Kg
- Painel com porta intertravada com o seccionador/ disjuntor de entrada
- Certificados CE, C-Tick, ABS, UL, CUL

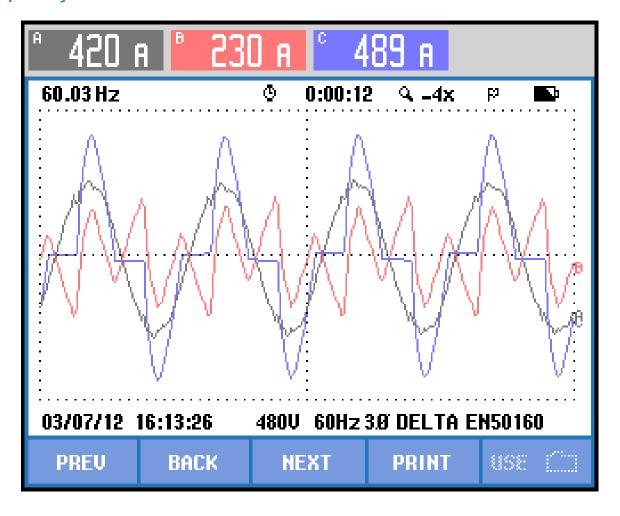

Case: Setor Automobilístico



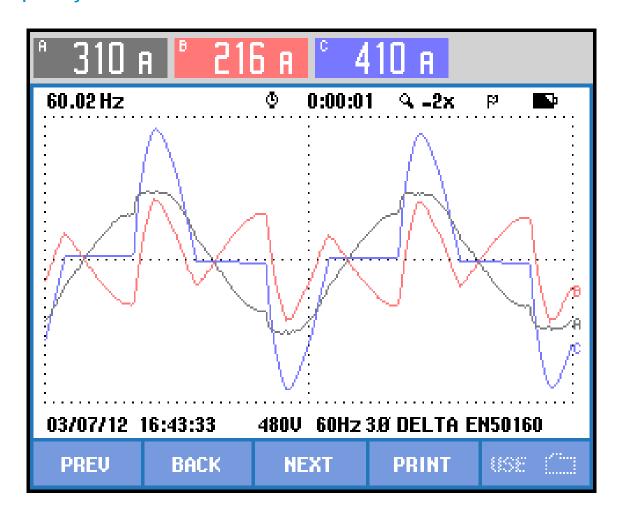
Caso de aplicação indústria automotiva

THDVAB

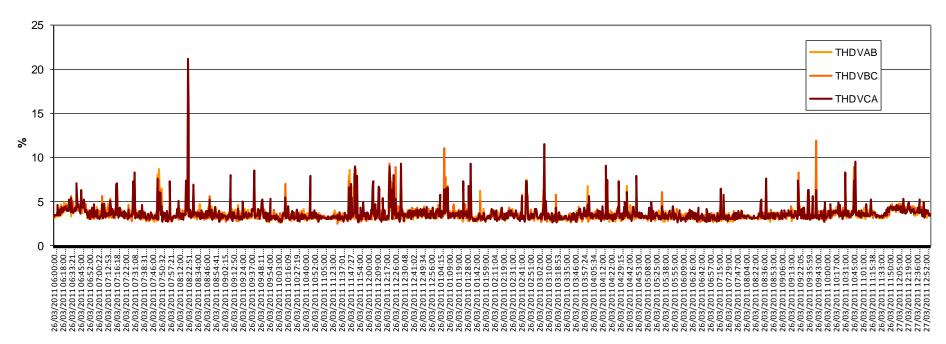



Caso de aplicação indústria automotiva

AccuSine[®]



Caso de aplicação indústria automotiva


Caso de aplicação indústria automotiva

Caso de aplicação indústria automotiva

Perfil de THD em Tensão

Contato:

Pedro Okuhara Schneider Electric

Gerente de Produto

Telefone: (11) 2165-5221

Email: pedro.okuhara@schneider-electric.com