MEGGER ACADEMY

MEDIDAS ELÉCTRICAS PARA MANTENIMIENTO PERIÓDICO DE TRANSFORMADORES MT/BT

Luis Carlos Sosa

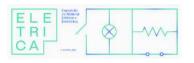
Geraldine Dayan

Directora de Marketing Megger España y Portugal

geraldine.dayan@megger.com

¿Qué es Megger Academy?

Megger Academy es una iniciativa de Megger para promover la formación y actualización de los profesionales de la industria Eléctrica.


- Webinars gratuitos
- Cursos avanzados
- Colaboración con cursos de formación

es.megger.com/megger-academy

PRÓXIMOS EVENTOS

ELÉTRICA | 13-16 OCTUBRE | OPORTO/PORTUGAL

Exposição de Material Elétrico e Eletrónica

ARWTR2022 | 24-26 OCTUBRE | BAIONA/VIGO

El 7º Taller Internacional de Investigación Avanzada sobre transformadores

MATELEC | 15-18 NOV | MADRID

Feria de referencia para la industria eléctrica, electrónica y de telecomunicaciones

es.megger.com/eventos

SÍGUENOS EN LAS REDES SOCIALES

https://www.linkedin.com/showcase/megger-espana-portugal

https://www.facebook.com/meggeres

https://twitter.com/MeggerES

Especialista en pruebas de Commisioning, para cables de media y alta tensión, pruebas en transformadores de potencia, Coordinador de Proyectos, Energía Solar, equipos de ensayos no destructivos y Protección Catódica.

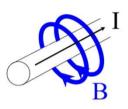
PONENTE

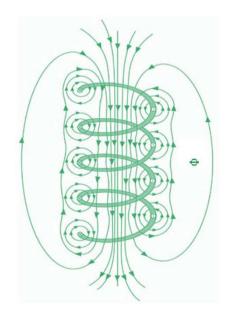
Luis Carlos Sosa

Asesor Técnico y Comercial Megger España & Portugal

luis.sosa@megger.com

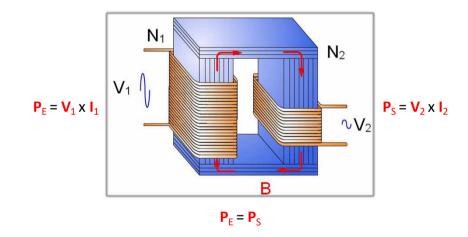
MEDIDAS ELÉCTRICAS PARA MANTENIMIENTO PERIÓDICO DE TRANSFORMADORES MT/BT





TEORÍA

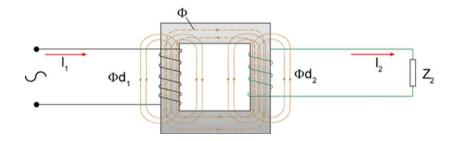
- La Corriente (A) pasa a través de un conductor y produce una fuerza de campo magnético
- El campo magnético se denomina B y su unidad es la Tesla (T)

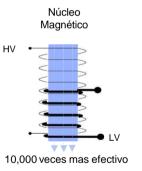


TEORÍA

- Ley de Faraday: Una fuente de energía aplica una corriente AC que pasa por el devanado primario, produce una densidad de flujo magnético que varia en el tiempo sobre el núcleo.
- Este flujo también pasa a través del secundario induciendo un voltaje en el secundario.
- Cuando la carga esta conectada al secundario, la corriente fluye según la impedancia de la carga

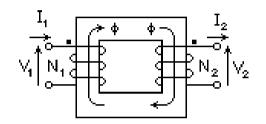
$$\in$$
 = $\int E \cdot dl = -\frac{d}{dt}\Phi = -\frac{d}{dt} \cdot \int B \cdot dS$

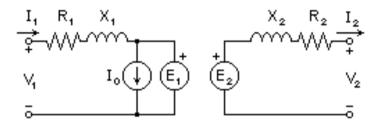


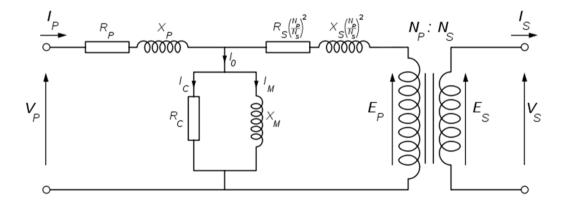


TEORÍA

La intensidad que circula por el primario (I1)
 y consecuentemente la intensidad que circula por el secundario (I2) crean un flujo común Φ


 Cada bobinado crea un flujo que no es abrazado por el otro (Φd1 y Φd2).Flujo de dispersión





ESQUEMA ELÉCTRICO

NÚCLEO

- Chapas de Acero al Silicio (3% reduce histéresis)
- Su objetivo es canalizar el flujo magnético Φ
- Esta compuesto por columnas y culata
- Se concentran las mayores pérdidas

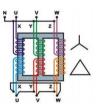
AISLAMIENTO

PRIMARIO

- Aislar los potenciales y proveer soporte mecánico
- CELULOSA; papel Kraft, envoltura del Devanado, Papel Crepe, Madera Eléctrica, etc

SECUNDARIO

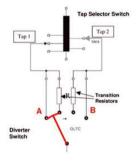
- Aislar potenciales, reducir calentamiento, mantiene alejada la humedad
- Aceite Mineral, Natural, Silicona, Aire, Nitrógeno, SF6

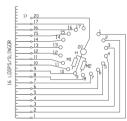


BOBINA

- Paso de electricidad
- Hilos o platina de Cobre o Aluminio cubiertas de aislante
- Sus arrollamientos pueden estar conectados en:
 - Estrella (Y)
 - Triángulo (D)
 - Zig-zag (Z)

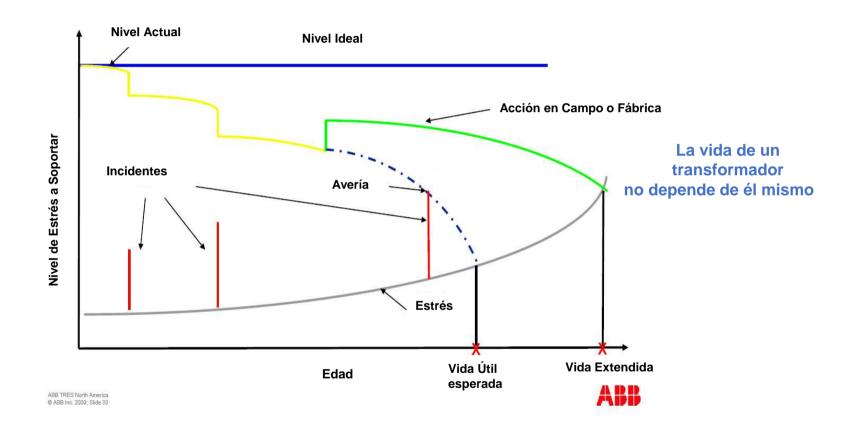
BORNAS


- Elementos del transformador donde existe una gran concentración de esfuerzo dieléctrico en muy reducido volumen
- Su vida útil es menor que la del propio transformador
- Se recomienda realizar con mayor periodicidad las pruebas y análisis de diagnóstico que en otros componentes del transformador



CAMBIADOR DE TOMAS

- Es el componente del transformador donde se desarrollan mayores esfuerzos eléctricos
- Donde se acumula la mayor contaminación. La carbonización de los contactos y la degradación del aceite son el principal motivo de los fallos
- Tiene **menor vida útil** que el resto de partes del transformador



VIDA DE UN TRANSFORMADOR

VIDA DE UN TRANSFORMADOR

FACTORES DE ESTRÉS

Térmico

 Afecta a todos los componentes. Envejece el material dieléctrico (incluso a temperaturas nominales). El estrés aumenta con temperaturas altas y con cambios repetidos en la temperatura.

Químico

- La celulosa descompuesta crea agua en el aislamiento solido
- Aditivos en el aceite pueden deteriorar componentes del aislamiento.

Eléctrico

• El material aislante separa conductores a diferentes potenciales. Esto envejece el material dieléctrico (incluso a tensión nominal). Incidentes y maniobras en la red producen estreses eléctricos

Mecánico

• Deformaciones / desplazamientos de los elementos esamblados. Golpes durante su transporte. Altas corrientes de cortocircuitos deforman los bobinados.

Ambiental

- El agua puede entrar a través de juntas con fugas.
- La sal y otras sustancias corrosivas en el ambiente pueden deteriorar tanques y equipos perifércos.

Altas temperaturas y el agua deterioran a todos los transformadores.

TIPOS DE ENSAYO

CIGRE TB 445

		Aislamiento entre espiras	Aislamiento bobinas / Bornas	Continuidad bobinas / Bornas /OLTC	Geometría del Bobinado	Aislamiento Circuito Magnético	Integridad Circuito Magnético
	Relación Transformación	•					
B A S I C	Resistencia Bobinado			•			
	Corriente Excitación	•		C.			•
	Capacidad y Tangente Delta		•		•	•	•
	Reactancia de fuga				•		
s	Resistencia Aislamiento		•			•	
	Tierra Núcleo					•	
A V A N Z A	FRSL			•	•		
	SFRA	•			•	•	•
	Polarización / Despolarización		•				
	DFR		•				
	RVM		•				
	Detección Eléctrica DP	•	•				
s	Detección Acústica DP	•	•				
	Detección UHF DP	•	•				

TIPOS DE ENSAYO

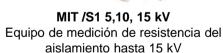
IEEE

	Tipos de er	nsayo ESTÁNDAR (IEEE)		
ELEMENTO V	/ERIFICADO	ENSAYO		
		Resistencia		
		Ratio/polaridad		
		Corriente de excitación		
		Impedancia de cortocircuito		
Bobi	inas	Análisis de respuesta de frecuencia – SFRA -		
		Resistencia del aislamiento		
		Capacidad		
		Tangente delta		
		Respuesta de frecuencia dieléctrica – DFR-		
		Capacidad		
Bor	nas	Tangente delta		
		Respuesta de frecuencia dieléctrica – DFR-		
		Contenido de agua		
Aceite a	nislante	Rigidez dieléctrica		
		Tangente delta		
Celulosa aislante		Respuesta de frecuencia dieléctrica – DFR-		
		Resistencia		
	En carga	Ratio		
		Continuidad (antes de la pausa)		
		Resistencia dinámica (DRM)		
Cambiador de tomas		Corriente de excitación		
Cambiador de tomas		Análisis de respuesta de frecuencia – SFRA -		
		Tiempo de contacto (DRM)		
	Sin carga	Resistencia		
		Corriente de excitación		
		Ratio		
		Resistencia del aislamiento		
NI-C-	loo	Corriente de excitación		
Núc	ieu	Análisis de respuesta de frecuencia – SFRA -		
		Verificación de la tierra		

ENSAYOS BÁSICOS DE RUTINA

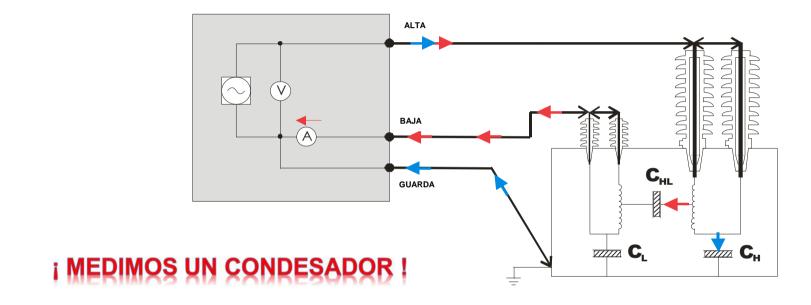
IEEE C57,152-2013 / IEC 60076-1

- Resistencia del aislamiento
- Relación de transformación y polaridad
- Resistencia de bobinados
- Corriente de excitación
- Impedancia de cortocircuito / Reactancia dispersión
- Rigidez dieléctrica del aceite



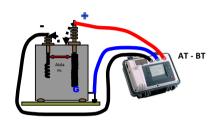
OBJETIVO

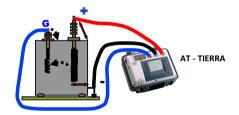
Verificar que el aislamiento del transformador posee una alta resistencia al paso de corriente entre elementos con diferente potencial.

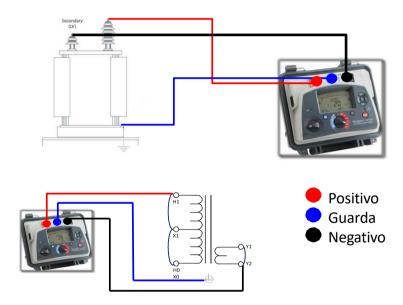


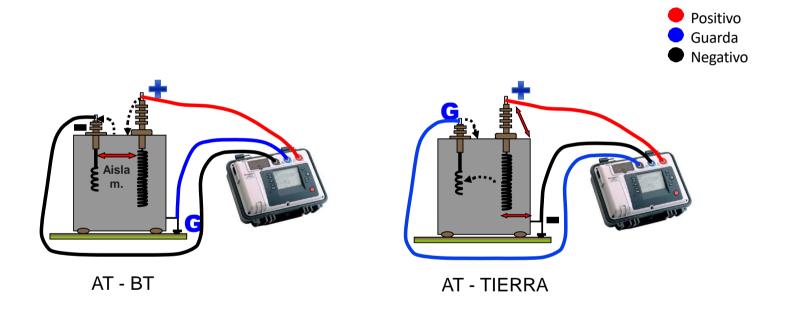
- La medida se realiza normalmente a 5 kV
- Factores que afectan la prueba:
 - Contaminación en el aislamiento
 - Humedad
 - Temperatura.

Tensión CA del Trafo	Tensión medición CC		
X ≤ 100 V	100 V ≤ X ≤ 250 V		
440 V ≤ X ≤ 550 V	500 V ≤ X ≤ 1.000 V		
2.400 V	1.000 V ≤ X ≤ 2.500 V		
X ≥ 4.160 V	X ≥ 5.000 V		

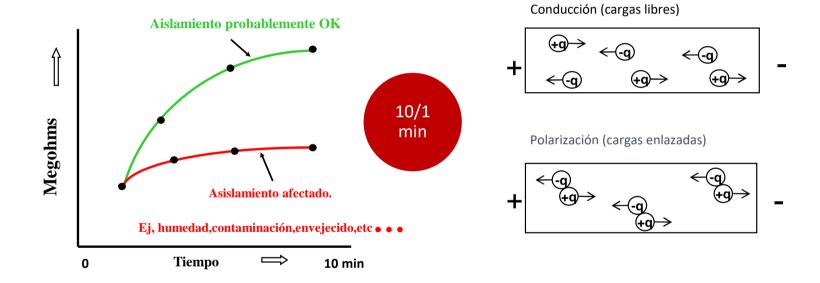





- Medida entre devanados, y estos con tierra.
- Se aconseja el uso de un tercer cable (guarda) para eliminar corrientes superficiales.
- Tipos de medida más usuales:
 - Medida del valor absoluto
 - Medida del índice de polarización (PI)
 - Medida del índice de absorción dieléctrica (DAR)



- Trafo de 2 devanados
 - Primario vs Secundario, Guarda a cuba.
 - Primario vs Cuba , Guarda a Secundario.
 - Secundario vs Cuba, Guarda a Primario
- Auto -Trafo de 3 devanados
 - Primario vs terciario , Guarda a cuba.
 - Primario vs Cuba, Guarda a terciario.
 - Terciario vs Cuba, Guarda a Primario



USO DEL GUARDA

ÍNDICE DE POLARIZACIÓN

ANÁLISIS DE RESULTADOS

 La <u>resistencia de aislamiento</u> debe ser como mínimo1 MΩ por cada 1 kV de tensión de servicio, con un valor mínimo de 1 MΩ.

ESTADO AISLAMIENTO	1 min	
Peligroso	<500 MΩ	
Bueno	>500 MΩ	

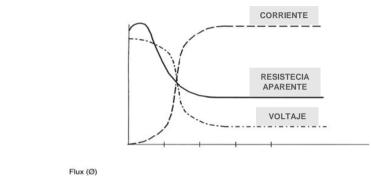
Para la medición del <u>índice</u> <u>de polarización</u>:

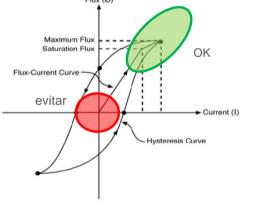
PI 10/1
x< 1
1≤ x ≤ 2
2< x ≤ 4
4 <x< td=""></x<>

DEFECTOS DETECTABLES

- Devanados en cortocircuito.
- Devanados en cortocircuito con el núcleo.
- Devanados en cortocircuito con la cuba.
- Aislamiento papel-aceite en un pobre estado.

OBJETIVO


Verificar la condición electromecánica del transformador a través de la medición de la resistencia de sus devanados (para cada posición de conmutador) aplicando una tensión y corriente de CC.

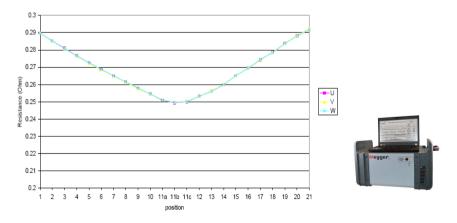


- Se debe saturar el núcleo
- La corriente de prueba de ser aproximadamente del 1% de la corriente nominal
- Nunca se debe exceder el 15% de la corriente nominal
- Si la corriente de prueba es demasiado baja, la resistencia medida no será correcta

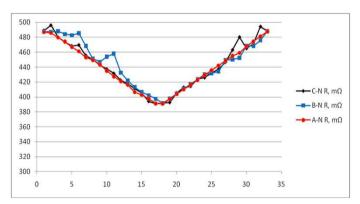
METODOLOGÍA

- La resistencia óhmica varías con la temperatura
- La medición se corrige a la temperatura de elevación de la unidad + 20 °.

Para el caso de devanados de cobre la corrección es:


$$R_{20^{9}C} = R_m \frac{(20 + 234,5)}{(T_m + 234,5)}$$

 $R_{20^{\circ}\text{C}}$: Resistencia referida a 20 °C R_m : Resistencia medida a la temperatura T_m : Temperatura de ensayo, en °C

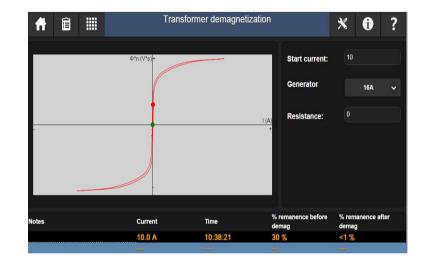

La desviación aceptable para esta prueba en el campo es del 2% de los valores de referencia (S.D.Mayer)

- IEEE C57.152 establece que las <u>discrepancias admisibles</u> de los valores medidos entre fases sea del 2%.
- CIGRE (Brochure 445) establece que las discrepancias máximas admisibles respecto a los valores obtenidos en fábrica, deben ser de hasta el 1%. Por su parte, las diferencias entre las fases debe ser como máximo entre el 2-3%

ANÁLISIS DE RESULTADOS

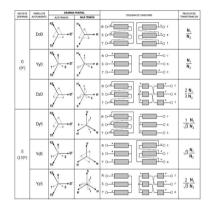
DEFECTOS DETECTABLES

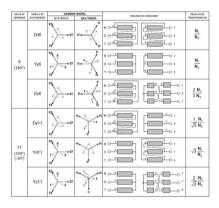
- Posibles conexiones y puentes abiertos o deteriorados
- Problemas en cambiadores de tomas como consecuencia de:
 - La deformación de las superficies de los contactos debido a un calentamiento localizado
 - El aumento de la resistencia entre los contactos a debido a depósitos de carbonización y/o contaminación
 - La disminución de la presión mecánica de los contactos como consecuencia de anomalías/ deterior en el sistema mecánico.



DESMAGNETIZACIÓN

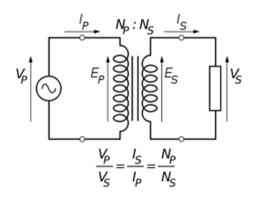
- Después de una medición de CC y antes de ponerlo en servicio se debe desmagnetizar el núcleo del transformador.
- La desmagnetización debe asegurar un valor de la remanencia de 0.
- Se aconseja realizar la desmagnetización mediante un algoritmo rápido y eficiente que realice el proceso dependiendo de tipo de transformador..
- Se aconseja poder visualizar el remanente magnético antes y después del proceso.





OBJETIVO

Determinar la funcionalidad correcta del transformador de acuerdo a los datos de su placa, niveles de tensión y diagrama vectorial



METODOLOGÍA

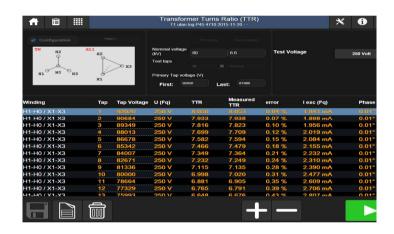
Para las mediciones se considera que la relación de las tensiones en vacío es aproximadamente igual a la relación entre el número de espiras

$$\begin{split} U_p &= e_p = N_p \cdot \left(\frac{d\varphi}{dt}\right) & \wedge & U_s = e_s = N_s \cdot \left(\frac{d\varphi}{dt}\right) \\ \Rightarrow & \frac{U_p}{U_s} = \frac{N_p \cdot \left(\frac{d\varphi}{dt}\right)}{N_s \cdot \left(\frac{d\varphi}{dt}\right)} = \frac{N_p}{N_s} = N \end{split}$$

en el caso del transformador ideal $U_p \cdot I_p = U_s \cdot I_s$

$$\therefore \quad \frac{U_s}{U_p} = \frac{N_s}{N_p} = \frac{I_p}{I_s}$$

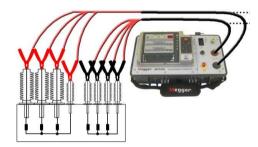
METODOLOGÍA


- Se excita un devanado con una fuente de **tensión CA** y se mide la tensión inducida en el devanado opuesto.
- La tensión de medida se puede aplicar tanto en el devanado de alta tensión (80,100,250V) como en el de baja tensión (2,8 V).
- La corriente demandada en el devanado donde se aplica la tensión es la corriente de excitación.

$$V_{rms} = 4.44 \cdot f \cdot N \cdot A \cdot B_{max}$$
 $B \propto I$

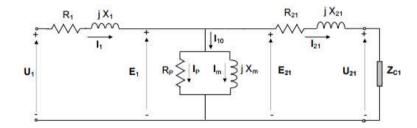
ANÁLISIS DE RESULTADOS

- Los valores medidos deben coincidir con los valores indicados en la placa de características .
- Las normativas IEEE y IEC establecen que la diferencia entre los valores indicados en la placa de características <u>no debe ser superior del 0,5 %</u> en ninguno de los devanados.



DEFECTOS DETECTABLES

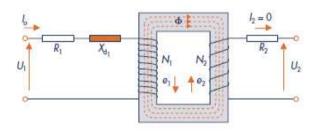
- Circuitos abiertos
- Espiras en cortocircuito
- Defectos graves en el cambiador de tomas
- Terminales identificados incorrectamente, etc..
- Midiendo el desplazamiento de fase se verifica la desviación angular entre el primario y el secundario

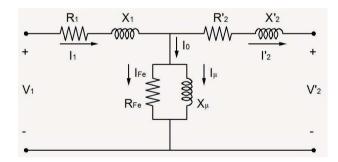


¿QUÉ ES?

Corriente de magnetización (Im): Es la corriente necesaria para que exista un flujo magnético en el núcleo.

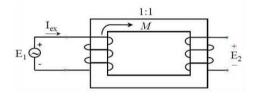
Corriente de pérdidas (Ip): Es la corriente existente en el núcleo como consecuencia de las pérdidas por histéresis y corrientes parásitas.


Corriente de Excitación (I0): Es la suma vectorial de Im + Ip. La corriente total si el transformador está sin carga.



OBJETIVO

Verificar la condición electromecánica del transformador a través de la medición de la corriente de excitación de cada una de las fases del transformador.



METODOLOGÍA

- La medición se realiza aplicando una tensión CA a cada uno de los devanado de AT:
 - Fase U, fase V y luego fase W
 - Los devanados secundarios / terciarios deben quedar en vacío (abierto)

$$V=4.44 \times fx A \times N \times B$$

$$B \propto Io$$

METODOLOGÍA

- Evitar hacer la medición después de una medida con CC, por ejemplo, resistencia de devanados. <u>Desmagnetizar</u>.
- La corriente de excitación depende del nivel de tensión aplicada. Se recomienda hacer la medida siempre con los mismos valores.
- Se recomienda realizar la medida a valores de tensión lo más cercanos a lo de servicio.
- La medición debe realizarse desde el lado del devanado de AT.
- Se miden posiciones extremas y media del cambiador de tomas

ANÁLISIS DE RESULTADOS

- Los valores se darán en mA.
- Los valores obtenidos se deben comparar con otros valores medidos anteriormente (IEEE C57.152).
- De existir una espira en corto circuito, la corriente de excitación incrementará

	Actual Ratio	% Error	I exc mA
L1	4,536	0,05	0,7
12	4,535	0,05	0,4
13	4,536	0,06	0,7
L1	4,471	0,10	0,7
12	4,470	0,08	0,4
L3	4,470	0,08	0,7
L1	4,404	0,10	0,7
L2	4,405	0,11	0,4
L3	4,404	0,09	0,7
L1	4,341	0,17	0,7
L2	4,340	0,14	0,4
L3	4,340	0,15	0,7
L1	4,273	0,16	0,8
2	4,274	0,17	0,4
L3	4,274	0,17	0,8
L1	4,203	0,08	0,8
2	4,203	0,07	0,5
L3	4,202	0,06	0,8
L1	4,132	0,03	0,8
L2	4,131	0,05	0,5
L3	4,131	0,06	0,8
L1	4,066	0,01	0,9
L2	4,065	0,03	0,5
L3	4,066	0,02	0,9

ANÁLISIS DE RESULTADOS

- En los transformadores trifásicos el valor de la corriente de excitación de las fases exteriores deben ser iguales y mayores que la de la fase central
- El valor de la fase central va a diferir en un sistema trifásico dependiendo de la configuración de los devanados. La lectura en la fase central será del 50 al 70% de la lectura de los exteriores.
- Compare los resultados de fabrica o de pruebas anteriores si están disponibles:
 - Si la <u>lex <50mA</u>, la diferencia entre los dos valores mas altos debe ser <10%.
 - Si la <u>lex >50mA</u>, la diferencia entre los dos valores mas altos debe ser <u><5%</u>.

DEFECTOS DETECTABLES

- Cambio en la geometría del núcleo y devanados
- Espiras en cortocircuito.
- Problemas en el cambiador
- Cambio en la reluctancia efectiva del núcleo.
- Delaminación del núcleo
- Corrientes circulares
- Anomalías en la puesta a tierra del núcleo

¡Muchas Gracias!

Luis Carlos Sosa

luis.sosa@megger.com

+34 91 616 54 96 megger.iberia@megger.com es.megger.com

