

TACKLING ENERGY EFFICIENCY WITH CLEVER CABLING

EXPERT'S WEBINAR Energy Efficiency: Cables and Wiring

Voltimum ANZ 03 December 2014 | © Voltimum

Expert Introduction - Presenter 1

lan Richardson

ABB

Senior Product and Standards Engineer, Certified Trainer and Assessor Low Voltage Products

ian.richardson@au.abb.com www.abbaustralia.com.au

Power and productivity for a better world™

Established reasons for considering energy efficiency in buildings:

- Meet specification requirements
- Greenstar ratings
- Nabers requirements
- Save money!

41% of energy consumption is attributed to buildings

- When considering energy efficiency we immediately look to traditional automation techniques
 - Lighting control, brightness control and daylight harvesting
 - Sun shading through shutters and blinds
 - Heating, ventilation and cooling control
 - Energy monitoring and management
- These traditional automation measures can provide savings from 15% to more than 50% of a building's energy footprint.
- In a greenfield site or a refurbishment, additional techniques beyond what is "traditional" can be utilized.

Tackling energy efficiency -the basics.....and more

- Lighting control and regulation
- Heating, ventilation, cooling
- Blinds and shutter control
- Security and monitoring
- Energy and load management
- Visualisation and operation
- Central automatic control
- Remote control / maintenance
- Interface to other control systems
 - DALI
 - **BacNet**

IEC 14543-3

Tackling energy efficiency

The advantages of standardisation

- A platform such as KNX has multiple approvals for global markets.
- Compliance to an IEC standard ensures backward and forward compatibility.
- Multi vendor open protocol allows maximum competition for product costs.

Beyond building automation control

A different method to tackle energy efficiency and energy savings *Clever cabling*

Expert Introduction - Presenter 2

Martin Muxworthy

Nexans Olex Martin is an expert in Australian Standards, Electrical Supply Industry cables, Variable Speed Drive cables, Instrument and Communication cables Martin.Muxworthy@nexans.com

www.olex.com.au

Established cable sizing methods

- Continuous current rating
 - Phase conductor resistance and cable thermal environment
- Voltage drop
 - Phase conductor resistance and cable length
- Earth fault loop impedance
 - Phase and earth conductor resistance and cable length
- Short circuit rating
 - Phase conductor resistance and thermal properties

Established cable sizing methods

- Based on safety, protect persons, livestock and property from
 - Electrical shock
 - Fire
 - Physical injury hazards

Current rating

Prevent cable overheating, cable premature failure and possibility of fire

Voltage drop

Ensure electrical appliances continue to operate correctly

Earth fault loop impedance

 Ensure circuit protective devices operate correctly under fault conditions, reducing risk of fire and/or electrical shock

Short circuit rating

Prevent cable overheating by ensuring cable is sized to carry maximum fault current capability of electrical system. Reduce risk of fire and/or electrical shock.

Tackling Energy Efficiency with Clever Cabling

Established cable sizing methods

Defined in standards and mandated by law

AS/NZS 3000 (The Wiring Rules)

Called up by law in each states' electrical installation rules

AS/NZS 3008.1.1 (Cable selection guide)

Referenced in AS/NZS 3000

Results in smallest cable size

- Lowest installation cost
- No consideration of operating costs, ie cost of losses

Tackling Energy Efficiency with Clever Cabling

Total lifetime cost of an electrical installation

Initial cable installation cost + operating costs

Energy efficient cable selection

- Lowest lifetime cost
- Optimum in energy efficiency

Installation contractors

Only interested in installation cost

Owners of electrical installations

Interested in total lifetime cost

Installation designers

Interested in both of above

Tackling energy efficiency with clever cabling?

- Can only be applied when cable size is selected based on current rating
 - Because current rating is based on thermal considerations where loss calculation is key
 - Current rating calculation is an energy balance equation, ie heat generated by conductor vs heat that can be carried away from conductor
 - Well established and covered by IEC 60287
 - Used to calculate current ratings in AS/NZS 3008

$$\mathbf{I} = \sqrt{\frac{\Delta \theta - W_d \left[\frac{1}{2} \mathbf{T}_1 + (\mathbf{T}_2 + T_3 + T_4)\right]}{R \mathbf{T}_1 + R(1 + \lambda_1) \mathbf{T}_2 + R(1 + \lambda_1 + \lambda_2)(\mathbf{T}_3 + T_4)}}$$

Consider the following example

- 400 V 3 Phase system requiring 250 A over 75 m
- Single core copper XLPE/PVC in trefoil configuration laid on cable ladder tray, unenclosed, in free air, protected from direct sunlight
- Initial solution 95 mm² ref column 9, table 8, AS/NZS 3008.1.1 (298 A)
- Voltage drop check to ensure compliance with AS/NZS 3000
 - V_d = 250 A x 75 m x 0.457 mV/A.m (ref column 8, table 40 AS/NZS 3008.1.1)
 - V_d = 8.6 V or 2.1 %

Step 1: Calculate losses and cost of losses for initial solution

- Losses = $I^2 \times R \times L \times N$
 - I = required cable loading in A
 - R = cable AC resistance at load temperature in Ω/km (ref column 5, Table 34 AS/NZS 3008.1.1)
 - L= circuit route length in km
 - N = number of phases (loaded conductors)
- Losses = 250² x 0.247 x 0.075 x 3 = 3473 W
- Assume cost of losses charged at nominal rate of 0.15 c/kWhr
- However cable circuits are unlikely to operate at full load continuously utilisation factor

Step 1 (cont'd): Calculate losses and cost of losses for initial solution

- Utilisation factor for supply mains 80%
- Cost of losses over one year
 - Losses x Utlisation² x c/kWhr x 24 x 365
 - 3.473 x 0.8² x 0.15 x 24 x 365 = \$2921

Step 2: Calculate total cost – cable plus losses over life of asset

- Cost of cable from typical list pricing (\$12/m)
- Total cost = 75 x 3 x 12 + 20 x \$2921
- Total cost = \$61,120
- Observation cost of losses major component of system cost for this size of cable

Step 3: Repeat for next and subsequent cable size/s and tabulate

Conductor Size	Voltage Drop Factor	Voltage Drop	Voltage Drop	AC Resistance	Cable Losses	Cost of Losses	Cable Cost	Total Cable Cost	Total Cost Cable + Losses (20yr)
mm ²	mV/A.m	V	%	ohm/km	kW	\$/yr	\$/100m	\$	\$
95	0.457	8.569	2.14	0.247	3.473	\$2,921.02	\$1,212.65	\$2,728.46	\$61,148.90
120	0.373	6.994	1.75	0.197	2.770	\$2,329.72	\$1,457.03	\$3,278.32	\$49,872.76
150	0.316	5.925	1.48	0.16	2.250	\$1,892.16	\$1,812.18	\$4,077.41	\$41,920.61
185	0.269	5.044	1.26	0.129	1.814	\$1,525.55	\$2,216.42	\$4,986.95	\$35,498.03
240	0.227	4.256	1.06	0.0991	1.394	\$1,171.96	\$2,958.03	\$6,655.57	\$30,094.70
300	0.202	3.788	0.95	0.0803	1.129	\$949.63	\$3,660.30	\$8,235.68	\$27,228.23
400	0.183	3.431	0.86	0.0646	0.908	\$763.96	\$4,835.82	\$10,880.60	\$26,159.79
500	0.17	3.188	0.80	0.0525	0.738	\$620.87	\$6,072.56	\$13,663.26	\$26,080.56
630	0.159	2.981	0.75	0.0432	0.608	\$510.88	\$7,829.43	\$17,616.22	\$27,833.88

Step 3 (cont'd): Observations

- Total cost drops rapidly when choosing only one or two sizes larger than the minimum size
- Optimum size is many times larger than minimum size, but approaches law of diminishing returns
- Optimum size 500 mm² but may not practically be the best option as this study does not take into account:
 - Extra space required to install larger cable
 - Extra effort (and cost) required to install larger cable
 - Additional money earned (interest) by virtue of the dollars saved by paying less for losses
 - Need to use financial function: Net Present Value (NPV) to determine optimum cable size

Step 4: Add NPV to previous table

Net Present Value represents the difference between the present value of savings in the cost of losses over the time period and the increase in capital expenditure required to purchase a larger cable size

$$NPV = \frac{Y(1 - (1 + r)^{-n})}{r} - cc$$

- Y = savings in cost of losses in \$/yr
- r = discount rate, typically 7% (the expected rate of return that those paying for the energy losses could earn in financial markets)
- n = time period in years, typically 20 years for an electrical asset
- cc = increase in capital expenditure (\$) as a result of using a larger cable in todays value (cable + other upfront costs)

Step 4: Add NPV to previous table

Conductor Size	Cable Losses	Cost of Losses	Cable Cost	Total Cable Cost	Total Cost Cable + Losses (20yr)	Savings in Cost of Losses	Increase in Capital Expenditure	Net Present Value over Max Payback Year
mm ²	kW	\$/yr	\$/100m	\$	\$	\$/yr	\$	\$
95	3.473	\$2,921.02	\$1,212.65	\$2,728.46	\$61,148.90	\$0.00	\$0.00	\$0.00
120	2.770	\$2,329.72	\$1,457.03	\$3,278.32	\$49,872.76	\$591.30	\$549.86	\$5,714.39
150	2.250	\$1,892.16	\$1,812.18	\$4,077.41	\$41,920.61	\$1,028.86	\$1,348.94	\$9,550.84
185	1.814	\$1,525.55	\$2,216.42	\$4,986.95	\$35,498.03	\$1,395.47	\$2,258.48	\$12,525.13
240	1.394	\$1,171.96	\$2,958.03	\$6,655.57	\$30,094.70	\$1,749.07	\$3,927.11	\$14,602.52
300	1.129	\$949.63	\$3,660.30	\$8,235.68	\$27,228.23	\$1,971.39	\$5,507.21	\$15,377.77
400	0.908	\$763.96	\$4,835.82	\$10,880.60	\$26,159.79	\$2,157.06	\$8,152.13	\$14,699.82
500	0.738	\$620.87	\$6.072.56	\$13.663.26	\$26.080.56	\$2.300.16	\$10.934.80	\$13.433.10
630	0.608	\$510.88	\$7,829.43	\$17,616.22	\$27,833.88	\$2,410.14	\$14,887.76	\$10,645.29

Step 4 (cont'd): Observations

- Optimum cable size has highest NPV
- Highest NPV not necessarily the cable size that has lowest total cost (cable and losses)

Where to from here?

- Continuing education of the industry via forums such as Voltimum
- Addition of a worked example into AS/NZS 3008.1.1
 - Currently in progress

Further reading

- IEC standard 60287-3-2: Electric cables Calculation of current rating Part 3: Sections on operating conditions – Section 2: Economic optimization of power cable size
 - Replaces IEC 1059 first published in 1991
- Technical article titled "Principles of Economic and Energy Efficient Cable Sizing" by Auseng, download from the ICAA website at the link

http://www.copper.com.au/copper/wcms/en/home/Principles-of-Economic-and-Energy-Efficient-Cable-Sizing-AusEng-Sep-.pdf

Do you have questions?

Voltimum ANZ www.voltimum.com.au